Modélisation de l’interaction arc-cathode dans le cas des cathodes en matériau non-réfractaire.

Auteurs-es

DOI :

https://doi.org/10.52497/jitipee.v9i1.390

Résumé

La modélisation des phénomènes relatifs à l’interaction des arcs électriques avec les électrodes permet d’une part de compléter les modèles magnétohydrodynamiques usuellement utilisés pour représenter la colonne, en fournissant des conditions aux limites utiles, et d’autre part d’étudier le chauffage et l’usure de ces électrodes. Cette modélisation est complexe en raison du grand nombre de phénomènes à prendre en compte et des écarts à l’équilibre thermodynamique local dus aux petites distances mises en jeu. Un enjeu important est donc de comprendre comment ces déséquilibres structurent la zone proche électrode, en particulier dans le cas peu étudié d’une cathode non réfractaire. Cet article présente, en s’appuyant sur la littérature, une méthodologie pour évaluer les distances caractéristiques d’apparition des déséquilibres thermique, chimique (ionisation), et de séparation de charges. Cette méthodologie est validée sur le cas bien connu du plasma d’argon sous 1 bar (existant par exemple devant une cathode réfractaire), puis est appliquée à un plasma de cuivre sous forte pression (28 bars) issu de la vaporisation d’une cathode en cuivre (non réfractaire) soumise à un arc. Les résultats de l’étude réalisée confirment les structures de zone cathodique établies par Benilov, et en particulier la présence d’ionisation dans la gaine associée à la cathode en cuivre. Un modèle auto-cohérent de zone cathodique prenant en compte ces phénomènes est ensuite présenté et appliqué au calcul d’une structure à N spots cathodiques stationnaires et indépendants. Dans le cas d’un arc s’accrochant sur la cathode creuse (en cuivre) d’une torche à plasma de forte puissance, de bons ordres de grandeur sont obtenus pour la tension de gaine et le taux d’usure par vaporisation. Pour conclure, des perspectives d’étude sur ce sujet sont proposées. 

Références

I. Choquet, (2018) “Gas tungsten arc models including the physics of the cathode layer : remaining issues”, Welding in the World, vol. 62, no. 1, pp. 177–196.

https://doi.org/10.1007/s40194-017-0513-2

M. S. Benilov, (2019) “Modeling the physics of interaction of high-pressure arcs with their electrodes : advances and challenges”, Journal of Physics D : Applied Physics, vol. 53, no. 1, p. 013002.

https://doi.org/10.1088/1361-6463/ab47be

B. Jüttner, (2001) “Cathode spots of electric arcs”, Journal of Physics D : Applied Physics, vol. 34, no. 17, p. R103.

https://doi.org/10.1088/0022-3727/34/17/202

A. Anders, (2008) “Cathodic arcs : from fractal spots to energetic condensation.” Springer,.

https://doi.org/10.1007/978-0-387-79108-1

A. Gleizes, J.-J. Gonzalez, and P. Freton, (2005) “Thermal plasma modelling”, Journal of Physics D : Applied Physics, vol. 38, no. 9, p. R153.

https://doi.org/10.1088/0022-3727/38/9/R01

J. Trelles, C. Chazelas, A. Vardelle, and J. Heberlein, (2009) “Arc plasma torch modelling”, Journal of thermal spray technology, vol. 18, pp. 728–752.

https://doi.org/10.1007/s11666-009-9342-1

V. Rat, A. Murphy, J. Aubreton, M.-F. Elchinger, and P. Fauchais, (2008) “Treatment of nonequilibrium phenomena in thermal plasma flows”, Journal of Physics D : Applied Physics, vol. 41, no. 18, p. 183001.

https://doi.org/10.1088/0022-3727/41/18/183001

M. S. Benilov, (2008) “Understanding and modelling plasma–electrode interaction in high-pressure arc discharges : a review”, Journal of Physics D : Applied Physics, vol. 41, no. 14, p. 144001.

https://doi.org/10.1088/0022-3727/41/14/144001

E. Hantzsche, (1996), “Cathode spots - Theories of cathode spots”, in Handbook of Vacuum Arc Science and Technology (R. L. Boxman, D. M. Sanders, and P. J. Martin, eds.), pp. 73–151, Park Ridge, NJ : William Andrew Publishing.

https://doi.org/10.1016/B978-081551375-9.50007-2

I. Beilis, (2020) “Plasma and spot phenomena in electrical arcs”, vol. 113. Springer Nature.

https://doi.org/10.1007/978-3-030-44747-2

M. S. Benilov and M. Cunha, (2002) “Heating of refractory cathodes by high-pressure arc plasmas : I”, Journal of Physics D : Applied Physics, vol. 35, no. 14, p. 1736.

https://doi.org/10.1088/0022-3727/35/14/314

N. Almeida, M. Benilov, and G. Naidis, (2008)”Unified modelling of near-cathode plasma layers in high-pressure arc discharges”, Journal of Physics D : Applied Physics, vol. 41, no. 24, p. 245201

https://doi.org/10.1088/0022-3727/41/24/245201

M. Lisnyak, M. D. Cunha, J. M. Bauchire, and M. S. Benilov, (2017) “Numerical modelling of high-pressure arc discharges : matching the lte arc core with the electrodes”, Journal of Physics D : Applied Physics, vol. 50, no. 31, p. 315203.

https://doi.org/10.1088/1361-6463/aa76d3

M. Baeva, T. Zhu, T. Kewitz, H. Testrich, and R. Foest, (2021), “Self-consistent cathode–plasma coupling and role of the fluid flow approach in torch modelling”, Journal of Thermal Spray Technology, pp. 1–14.

https://doi.org/10.1007/s11666-021-01261-4

M. S. Benilov and L. G. Benilova, (2010) “The double sheath on cathodes of discharges burning in cathode vapour”, Journal of Physics D : Applied Physics, vol. 43, no. 34, p. 345204.

https://doi.org/10.1088/0022-3727/43/34/345204

N. A. Almeida, M. S. Benilov, L. G. Benilova, W. Hartmann, and N. Wenzel, (2013), “Near-cathode plasma layer on CuCr contacts of vacuum arcs”, IEEE Transactions on Plasma Science, vol. 41, no. 8, pp. 1938–1949.

https://doi.org/10.1109/TPS.2013.2260832

M. S. Benilov, M. D. Cunha, W. Hartmann, S. Kosse, A. Lawall, and N. Wenzel, (2013), “Space-resolved modeling of stationary spots on copper vacuum arc cathodes and on composite CuCr cathodes with large grains”, IEEE Transactions on Plasma Science, vol. 41, no. 8, pp. 1950–1958

https://doi.org/10.1109/TPS.2013.2263255

H. Kaufmann, M. Cunha, M. S. Benilov, W. Hartmann, and N. Wenzel, (2017) “Detailed numerical simulation of cathode spots in vacuum arcs : Interplay of different mechanisms and ejection of droplets”, Journal of Applied Physics, vol. 122, no. 16.

https://doi.org/10.1063/1.4995368

M. S. Benilov, (2024), “Ionization layer with collision-free atoms at the edge of partially to fully ionized plasmas”, Plasma Sources Science and Technology, vol. 33, no. 5, p. 055002.

https://doi.org/10.1088/1361-6595/ad3f49

M. S. Benilov and A. Marotta, (1995), “A model of the cathode region of atmospheric pressure arcs”, Journal of Physics D : Applied Physics, vol. 28, no. 9, p. 1869.

https://doi.org/10.1088/0022-3727/28/9/015

M. S. Benilov and M. D. Cunha,( 2003), “Bifurcation points in the theory of axially symmetric arc cathodes”, Physical Review E, vol. 68, no. 5, p. 056407.

https://doi.org/10.1103/PhysRevE.68.056407

D. Nandelstädt, M. Redwitz, L. Dabringhausen, J. Luhmann, S. Lichtenberg, and J. Mentel, (2002) “Determination of HID electrode falls in a model lamp III : Results and comparison with theory”, Journal of Physics D : Applied Physics, vol. 35, no. 14, p. 1639.

https://doi.org/10.1088/0022-3727/35/14/304

M. S. Benilov, M. Cunha, and G. Naidis, (2005) “Modelling interaction of multispecies plasmas with thermionic cathodes”, Plasma Sources Science and Technology, vol. 14, no. 3, p. 517.

https://doi.org/10.1088/0963-0252/14/3/014

https://fisica.uma.pt/public-domain/simulation-tools/ncpl/.

M. D. Cunha, M. A. Sargsyan, M. K. Gadzhiev, D. V. Tereshonok, and M. S. Benilov, (2023) “Numerical and experimental investigation of thermal regimes of thermionic cathodes of arc plasma torches”, J. Phys. D : Appl. Phys., vol. 56, no. 39, p. 395204.

https://doi.org/10.1088/1361-6463/ace063

O. Ojeda, Y. Cressault, P. Teulet, J.-P. Gonnet, D. F. N. Santos, M. D. Cunha, and M. S. Benilov, (2023) “LTE modelling of a DC arc ignition on cold electrodes”, in 23rd Int. Conf. Gas Discharges and their Applications, vol. 1, pp. 64–67.

E. L. Murphy and R. Good Jr, (1956) “Thermionic emission, field emission, and the transition region”, Physical review, vol. 102, no. 6, p. 1464.

https://doi.org/10.1103/PhysRev.102.1464

J. Paulini, T. Klein, and G. Simon, (1993) “Thermo-field emission and the Nottingham effect”, Journal of Physics D : Applied Physics, vol. 26, no. 8, p. 1310.

https://doi.org/10.1088/0022-3727/26/8/024

M. S. Benilov, (1993) “Nonlinear heat structures and arc-discharge electrode spots”, Physical Review E, vol. 48, no. 1, p. 506.

https://doi.org/10.1103/PhysRevE.48.506

M. S. Benilov, (1998), “Maxwell’s construction for non-linear heat structures and determination of radius of arc spots on cathodes”, Physica Scripta, vol. 58, no. 4, p. 383.

https://doi.org/10.1088/0031-8949/58/4/015

P. Freton, J. J. Gonzalez, and G. Escalier, (2009) “Prediction of the cathodic arc root behaviour in a hollow cathode thermal plasma torch”, Journal of Physics D : Applied Physics, vol. 42, no. 19, p. 195205.

https://doi.org/10.1088/0022-3727/42/19/195205

F. Sambou, J. J. Gonzalez, M. Benmouffok, and P. Freton, (2021) “Theoretical study of the arc motion in the hollow cathode of a dc thermal plasma torch”, Journal of Physics D : Applied Physics, vol. 55, no. 2, p. 025201.

https://doi.org/10.1088/1361-6463/ac2a76

L. I. Sharakhovsky, A. Marotta, and V. N. Borisyuk, (1997) “A theoretical and experimental investigation of copper electrode erosion in electric arc heaters II. the experimental determination of arc spot parameters”, Journal of Physics D : Applied Physics, vol. 30, no. 14, p. 2018.

https://doi.org/10.1088/0022-3727/30/14/009

F. Cayla, P. Freton, and J.-J. Gonzalez, (2008), “Arc/cathode interaction model”, IEEE transactions on plasma science, vol. 36, no. 4, pp. 1944–1954.

https://doi.org/10.1109/TPS.2008.927378

M. Baeva, M. S. Benilov, N. A. Almeida, and D. Uhrlandt, (2016), Novel non-equilibrium modelling of a dc electric arc in argon, J. Phys. D : Appl. Phys., vol. 49, no. 24, p. 245205.

https://doi.org/10.1088/0022-3727/49/24/245205

D. Santos, N. Almeida, L. Benilova, and M. Benilov, (2024) “Model of non-equilibrium near-cathode plasma layers for simulation of ignition of high-pressure arcs on cold refractory cathodes”, Journal of Physics D : Applied Physics, vol. 57, no. 40, p. 405202.

https://doi.org/10.1088/1361-6463/ad5f3c

M. S. Benilov and G. V. Naidis, 1998 “Ionization layer at the edge of a fully ionized plasma,” Physical Review E, vol. 57, no. 2, p. 2230.

https://doi.org/10.1103/PhysRevE.57.2230

M. S. Benilov, M. Carpaij, and M. D. Cunha, (2006) “3D modelling of heating of thermionic cathodes by high-pressure arc plasmas”, J. Phys. D : Appl. Phys., vol. 39, no. 10, pp. 2124– 2134.

https://doi.org/10.1088/0022-3727/39/10/024

M. S. Benilov, M. D. Cunha, W. Hartmann, and N. Wenzel, (2014) “Numerical investigation of the stability of stationary solutions in the theory of cathode spots in arcs in vacuum and ambient gas”, Plasma Sources Sci. Technol., vol. 23, no. 5, p. 054007.

https://doi.org/10.1088/0963-0252/23/5/054007

R. Bötticher and M. Kettlitz, Dynamic mode changes of cathodic arc attachment in vertical mercury discharges, Journal of Physics D : Applied Physics, vol. 39, no. 13, p. 2715, 2006.

https://doi.org/10.1088/0022-3727/39/13/014

J. J. Gonzalez, F. Cayla, P. Freton, and P. Teulet, (2009) “Two-dimensional self-consistent modelling of the arc/cathode interaction”, Journal of Physics D : Applied Physics, vol. 42, no. 14, p. 145204.

https://doi.org/10.1088/0022-3727/42/14/145204

E. Hantzsche, B. Juttner, H. Pursch, and J. Daalder, (1983) “On the random walk of arc cathode spots in vacuum”, Journal of Physics D : Applied Physics, vol. 16, no. 9, p. L173.

https://doi.org/10.1088/0022-3727/16/9/002

M. D. Cunha, N. Wenzel, P. G. Almeida, W. Hartmann, and M. S. Benilov, (2019) “A simple model of distribution of current over cathodes of vacuum circuit breakers”, IEEE Transactions on Plasma Science, vol. 47, no. 8, pp. 3462–3469.

https://doi.org/10.1109/TPS.2019.2927794

M. S. Benilov, (1999) “Analysis of ionization non-equilibrium in the near-cathode region of atmospheric-pressure arcs”, Journal of Physics D : Applied Physics, vol. 32, no. 3, p.257.

https://doi.org/10.1088/0022-3727/32/3/013

M. Mitchner and C. H. Kruger Jr, (1973), “Partially ionized gases”. John Wiley and Sons, Inc., New York.

V. M. Zhdanov, (2002), “Transport processes in multicomponent plasma”. CRC Press.

R. Devoto, (1973), “Transport coefficients of ionized argon”, Physics of Fluids, vol. 16, no. 5, pp. 616–623.

https://doi.org/10.1063/1.1694396

L. Monchick, Collision integrals for the exponential repulsive potential, The Physics of Fluids, vol. 2, no. 6, pp. 695–700, 1959.

https://doi.org/10.1063/1.1705974

A. Anders, (1990), “A formulary for plasma physics”. Akademie-Verlag, Berlin.

W. Lotz, (1970), “Electron-impact ionization cross-sections for atoms up to Z = 108”, Zeitschrift für Physik A Hadrons and nuclei, vol. 232, no. 2, pp. 101–107.

https://doi.org/10.1007/BF01393132

M. S. Benilov and L. G. Benilova, (2013), “Field to thermo-field to thermionic electron emission : A practical guide to evaluation and electron emission from arc cathodes”, Journal of Applied Physics, vol. 114, no. 6.

https://doi.org/10.1063/1.4818325

https://en.wikipedia.org/wiki/Implicit_curve.

Couverture de l'article

Téléchargements

Fichiers supplémentaires

Publié-e

2025-09-02

Numéro

Rubrique

Articles