Données thermodynamiques molaires de l’oxyde de zinc gazeux

Auteurs-es

DOI :

https://doi.org/10.52497/jitipee.v9i1.373

Résumé

Le calcul des propriétés thermodynamiques molaires de l’oxyde de zinc est proposé et discuté. Cette molécule revêt une importance capitale dans le contrôle des propriétés des dépôts comme la nanostructure et l’orientation cristalline des surfaces. Nous rappelons l’ensemble des formules nécessaires ainsi que l’influence des nombres quantiques nécessaires pour le calcul des fonctions de partition. Les résultats sont fournis sous forme d’une table dont les températures varient de 100 K à 20000 K.

Références

Z. Yu, H. Moussa, M. Liu, R. Schneider, M. Moliere, H. Liao, (2018), “Solution precursor plasma spray process as an alternative rapid one-step route for the development of hierarchical ZnO films for improved photocatalytic degradation”, Ceramics International, Vol. 44, Issue 2, P. 2085-2092.

https://doi.org/10.1016/j.ceramint.2017.10.156

E. S. Jang, J.-H. Won, S.-J. Hwang, and J.-H. Choy, (2006), “Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity”, Adv. Mater., Vol 18, p 3309–3312.

https://doi.org/10.1002/adma.200601455

R. B. Saunders, E. McGlynn, M. O. Henry, Published: September 07, (2011), “Theoretical Analysis of Nucleation and Growth of ZnO Nanostructures in Vapor Phase Transport Growth”, Cryst. Growth, Vol. 11, p 4581–4587.

https://doi.org/10.1021/cg200828y

G. Herzberg, (1950), “Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules”, second edition, editeur D. Van Nostrand Company.

https://archive.org/details/molecularspectra032774mbp/mode/2up

C. L. Pekeris, (1934), “The Rotation-Vibration Coupling in Diatomic Molecules”, Phys. Rev., Vol 45, p 98-103.

https://doi.org/10.1103/PhysRev.45.98

L.V. Gurvich, I.V. Veyts, C.B. Alcock, (1991), “Thermodynamic Properties of Individual Substance”, Hemisphere.

Y. Babou, Ph. Rivière, M.-Y. Perrin, A. Soufiani, (2009), “High-Temperature and Nonequilibrium Partition Function and Thermodynamic Data of Diatomic Molecules”, Int J Thermophys Vol. 30, p 416–438.

https://doi.org/10.1007/s10765-007-0288-6

R. Liang, Y. Liu, F. Li, (2021), “Partition functions of atomic and diatomic species in high-temperature atmospheric plasmas”, Contrib. Plasma Phys.;e202100036, p 1-12

https://doi.org/10.1002/ctpp.202100036

C. N. Sakellaris, A. Papakondylis, and A. Mavridis, (2010), “Ab initio Study of the Electronic Structure of Zinc Oxide and its Ions, ZnO, Ground and Excited States”, J Phys Chem A., Vol 114, p 9333-9341

https://doi.org/10.1021/jp104764d

L.N. Zack, R.L. Pulliam, L.M. Ziurys, (2009), “The pure rotational spectrum of ZnO in the X1Σ+ and a3Πi states”, Vol 256, Issue 2, p 186-191.

https://doi.org/10.1016/j.jms.2009.04.001

D. E. Clemmer, N. F. Dalleska, P. B. Armentrout, (1991), “Reaction of Zn+ with NO2. The gas‐phase thermochemistry of ZnO”, The Journal of Chemical Physics 95, p 7263-7268

http://dx.doi.org/10.1063/1.461403

Macolm W. Jase, (1985), “Thermochemical Table”, NIST-JANAF.

https://janaf.nist.gov/janaf4pdf.html

K. S. Drellishak, D. P. Aeschliman, and Ali Bulent Cambel, (1965), “Partition Functions and Thermodynamic Properties of Nitrogen and Oxygen Plasmas”, Physics of Fluids, Vol 8, N°9, p1590-1600.

http://dx.doi.org/10.1063/1.1761469

M. Capitelli, G. Colonna, A. D’Angola, (2011), “Fundamental Aspects of Plasma Chemical Physics”, Springer Science.

Couverture du vol. 9 no 1.

Téléchargements

Publié-e

2025-04-15

Numéro

Rubrique

Articles