## JOURNAL INTERNATIONAL DE TECHNOLOGIE, DE L'INNOVATION, DE LA PHYSIQUE, DE L'ÉNERGIE ET DE L'ENVIRONNEMENT

# Données thermodynamiques molaires de l'oxyde de zinc gazeux

M. Tartarin, P. André, S. Goutier, V. Rat, A. Kéromnès, E. Maouhoub-André



### ISSN: 2428-8500

## DOI: 10.52497/jitipee.v9i1.373

Le sujet de cet article a été présenté lors du colloque sur les arcs électriques (CAE XVII) les 17 et 18 mars 2025 à Limoges. L'article publié a fait l'objet d'une expertise indépendante par deux spécialistes du domaine.

## Données thermodynamiques molaires de l'oxyde de zinc gazeux

Mathieu Tartarin<sup>(1)</sup>, Pascal André<sup>(2)</sup>, Simon Goutier<sup>(1)</sup>, Vincent Rat<sup>(1)</sup>, Alan Kéromnès<sup>(1)</sup>, Essaadia Maouhoub-André<sup>(2)</sup>

<sup>(1)</sup> Univ. Limoges, CNRS, UMR 7315, F-87000 Limoges, France
 <sup>(2)</sup> Université Clermont Auvergne, CNRS, LPCA, F-63000 Clermont-Ferrand, France pascal.andre@uca.fr

**Résumé** – Le calcul des propriétés thermodynamiques molaires de l'oxyde de zinc est proposé et discuté. Cette molécule revêt une importance capitale dans le contrôle des propriétés des dépôts comme la nanostructure et l'orientation cristalline des surfaces. Nous rappelons l'ensemble des formules nécessaires ainsi que l'influence des nombres quantiques nécessaires pour le calcul des fonctions de partition. Les résultats sont fournis sous forme d'une table dont les températures varient de 100 K à 20000 K.

**Mots clés** : ZnO, enthalpie libre molaire  $g^0$ , enthalpie molaire  $h^0$ , entropie molaire  $s^0$ , capacité thermique à pression constante  $c_p^0$ , fonction de partition, enthalpie de formation, molécule diatomique.

**DOI :** 10.52497/jitipee.v9i1.373

#### Introduction

Les dépôts nanostructurés d'oxyde de zinc ZnO réalisés par projection plasma de solution de précurseurs offrent de bonnes perspectives pour la photodégradation [1]. Afin d'optimiser ce procédé, le contrôle des propriétés des dépôts est nécessaire, en particulier la nanostructure et l'orientation cristalline des surfaces exposées à l'environnement [2]. Cependant un tel contrôle demande une connaissance approfondie des phénomènes physico-chimiques ayant lieu durant le traitement thermocinétique de la solution de précurseurs injectée dans le jet de plasma d'arc. Afin d'appréhender la formation de ces nanostructures, une description du plasma nécessite la connaissance des données thermodynamiques molaires de chaque espèce chimique pouvant être présente. C'est le cas de l'oxyde de zinc gazeux ZnO. Cette espèce moléculaire n'est pas disponible dans les tables classiques de thermochimie et elle joue un rôle essentiel durant les phénomènes de nucléation de nanostructures [3].

Dans cet article, nous proposons de déterminer les grandeurs thermodynamiques molaires de l'oxyde de zinc gazeux à l'équilibre thermodynamique. Celles-ci sont obtenues à partir des fonctions de partition de translation et interne. Nous donnerons dans un premier temps les formulations nécessaires pour calculer les fonctions de partition et les grandeurs thermodynamiques molaires. La fonction de partition interne résulte d'une sommation sur l'ensemble des niveaux quantiques électroniques, de vibration et de rotation. Nous présenterons les calculs des nombres quantiques maximaux de rotation et de vibration et l'influence du nombre de niveaux quantiques pris en compte sur la capacité thermique à pression constante. Finalement, nous donnerons les résultats des propriétés thermodynamiques molaires obtenus en utilisant la méthode des potentiels effectifs de Herzberg [4] avec un potentiel de Morse pour une gamme de température allant de 100 K à 20000 K.

#### 1. Propriétés thermodynamiques molaires

Les propriétés thermodynamiques molaires, calculées à la pression standard  $P^0 = 10^5 Pa$ , se déduisent des fonctions de partition de translation  $z_{tr}(T, V)$  et interne  $z_{int}(T)$ . Ainsi, l'enthalpie libre molaire  $g^0$ , l'enthalpie molaire  $h^0$ , l'entropie molaire  $s^0$  s'écrivent, respectivement, en prenant comme référence la température de 0 K:

$$g^{0} = -RTln(z_{tr}) - RTln(z_{int}) + \Delta H^{0}_{f,0K}$$
<sup>(1)</sup>

$$h^{0} = u^{0} + RT = RT^{2} \left( \frac{\partial ln(z_{tr} z_{int})}{\partial T} \right)_{V} + \Delta H^{0}_{f,0K} + RT$$
$$= \frac{5}{2}RT + RT^{2} \frac{dln(z_{int})}{dT} + \Delta H^{0}_{f,0K}$$
(2)

$$s^{0} = Rln(z_{tr} z_{int}) + RT \left(\frac{\partial ln(z_{tr} z_{int})}{\partial T}\right)_{V}$$
$$= Rln(z_{tr}) + Rln(z_{int}) + \frac{5}{2}R + RT \frac{d ln(z_{int})}{dT}$$
(3)

avec  $z_{tr}$  la fonction de partition de translation de la molécule qui dépend de la température *T* et du volume *V*;  $z_{int}$  la fonction de partition interne qui dépend de *T*;  $\Delta H_{f,0K}^0$  est l'enthalpie de formation à 0 K ;  $u^0$  l'énergie interne molaire et *R* la constante des gaz parfaits.

La capacité thermique à pression constante est donnée par

$$c_p^0 = \left(\frac{\partial h^0}{\partial T}\right)_p = \frac{5}{2}R + 2RT \frac{d\ln(z_{int})}{dT} + RT^2 \frac{d^2\ln(z_{int})}{dT^2}$$
$$= c_v^0 + R = \left(\frac{\partial u_0}{\partial T}\right)_V + R = 2RT \left(\frac{\partial \ln(z_{tr} z_{int})}{\partial T}\right)_V + RT^2 \left(\frac{\partial^2\ln(z_{tr} z_{int})}{\partial^2 T}\right)_V + R \quad (4)$$

Par conséquent, afin de calculer ces propriétés thermodynamiques molaires, nous devons déterminer les fonctions de partitions de translation  $z_{tr}$  et interne  $z_{int}$ .

#### 2. Fonctions de partition

#### 2.a. Formulations

La fonction de partition de translation s'écrit :

$$z_{tr} = \left(\frac{2\pi mkT}{h^2}\right)^{3/2} V \tag{5}$$

avec m la masse de l'atome, de l'ion ou de la molécule et k la constante de Boltzmann.

La fonction de partition interne est donnée par :

$$z_{int} = \sum_{e=1}^{e_{max}} g_e e^{-\frac{hcT_0(e)}{kT}} \sum_{\nu=0}^{\nu_{max}(e)} e^{-\frac{hcG_e(\nu)}{kT}} \sum_{J=0}^{J_{max}(\nu)} \frac{(2J+1)}{\sigma} e^{-\frac{hcF_\nu(J)}{kT}}$$
(6)

- *h* est la constante de Planck et *c* la célérité de la lumière dans le vide.
- $g_e$  est le poids statistique du niveau quantique électronique e qui est égal à la dégénérescence de ce niveau, soit la multiplicité pour les états  $\Sigma$  et deux fois la multiplicité pour les autres états.
- $\sigma$  est le facteur de symétrie de la molécule avec  $\sigma = 2$  pour ZnO.

 $F_{\nu}(J), G_{e}(\nu)$  et  $T_{0}(e)$  sont les termes spectraux donnés en  $cm^{-1}$ .

- $T_0(e)$  est tabulé (Tableau 1).
- $G_e(v)$  est le terme spectral de vibration :

$$G_e(v) = \omega_e \left(v + \frac{1}{2}\right) - \omega_e x_e \left(v + \frac{1}{2}\right)^2 \tag{7}$$

Les constantes spectroscopiques de vibration  $\omega_e$  et  $\omega_e x_e$  sont tabulées (Tableau 1).

v<sub>max</sub>(e) est le niveau de vibration maximal de l'état quantique électronique e, il est déterminé en comparant l'énergie de vibration à l'énergie de dissociation D<sub>0</sub>(e) (Tableau 1) du niveau électronique e. Ainsi v<sub>max</sub>(e) doit satisfaire les relations :

$$G_e(v_{max}) \le D_0(e) + G_e(0)$$
 et  $G_e(v_{max} + 1) > D_0(e) + G_e(0)$  (8)

• Le terme spectroscopique de rotation dépend fortement du couplage de rotation-vibration, ce terme spectral peut s'écrire [4]:

$$F_{v}(J) = B_{v}J(J+1) - D_{v}J^{2}(J+1)^{2}$$
(9)

 $B_v$  et  $D_v$  sont des variables qui sont fonction de l'état de vibration v de la molécule [4]. En résolvant l'équation de Schrödinger et en utilisant un potentiel de Morse, Pekeris [5] a obtenu,  $B_v$  et  $D_v$  sous forme d'un développement des puissances de  $\left(v + \frac{1}{2}\right)$ . Nous prenons en compte les deux premiers termes :

$$B_{\nu} = B_e - \alpha_e \left(\nu + \frac{1}{2}\right) \tag{10}$$

$$D_{\nu} = D_e + \beta_e \left(\nu + \frac{1}{2}\right) \tag{11}$$

Avec  $\beta_e = D_e \left( \frac{8\omega_e x_e}{\omega_e} - \frac{5\alpha_e}{B_e} - \frac{\alpha_e^2 \omega_e}{24B_e^3} \right)$ ;  $D_e = \frac{4B_e^3}{\omega_e^2}$ ;  $B_e = \frac{h}{8\pi^2 \mu c r_e^2}$  avec  $\mu$  la masse réduite,  $r_e$  la distance internucléaire à l'équilibre.

Si  $\alpha_e$  n'est pas tabulé (Tableau 1), nous avons utilisé la formule approchée [4]:

$$\alpha_e = \frac{6\sqrt{\omega_e x_e B_e^3}}{\omega_e} - \frac{6B_e^2}{\omega_e} \tag{12}$$

J<sub>max</sub>(v) est le nombre quantique de rotation maximal du niveau de vibration v. Il est déterminé par la méthode des potentiels moléculaires effectifs de Herzberg [4]. L'énergie potentielle de la molécule peut s'écrire comme la somme de l'énergie de la molécule non tournante (potentiel de Morse) et de l'énergie cinétique de rotation :

$$U(r,J) = D'_{e} \left(1 - e^{\frac{-2\beta(r-r_{e})}{r_{e}}}\right)^{2} + B_{e} \left(\frac{r_{e}}{r}\right)^{2} \left(J(J+1)\right)$$
(13)

Avec  $\beta = \frac{\omega_e}{4\sqrt{B_e D'_e}}$ ,  $D'_e$  la profondeur du puits de potentiel  $D'_e = D_0(e) + G_e(0)$ , r est la

distance séparant les deux noyaux de la molécule,  $r_e$  la distance d'équilibre.

Pour chaque nombre quantique J, on recherche la distance internucléaire  $r_m$  pour laquelle le potentiel U(r,J) est maximal. Pour cela, on recherche la valeur pour laquelle la dérivée première de U(r,J) est nulle.

Une fois cette distance déterminée, l'énergie  $U(r_m, J)$  est comparée à celle du rotateur sphérique vibrant :  $G_e(v) + F_v(J) + G_e(0)$ . J est égale à  $J_{max}(v)$  lorsque l'égalité suivante est vérifiée :

$$U(r_m, J_{max}) = G_e(v) + F_v(J_{max})$$
<sup>(14)</sup>

Il est à noter que lorsque les constantes spectroscopiques sont obtenues à partir de données expérimentales, elles conduisent parfois à une mésestimation de  $F_v(J)$  pour les grandes valeurs de *J*. Par conséquent la détermination de  $J_{max}(v)$  peut-être entachée d'erreur. Plusieurs auteurs proposent des stratégies [6, 7, 8]. Nous pouvons citer le lissage linéaire de  $B_v$  en fonction de v, le calcul approximatif de  $D_v$  par une relation dépendante de  $G_e(v)$  et de  $B_v$  [6]. Une autre stratégie est de tester la croissance de J en fonction de v et d'imposer la contrainte  $J_{max}(v + 1) \leq J_{max}(v)$  [7, 8].

Nos données retenues (Tableau 1) sont issues essentiellement de calculs théoriques [9]. Ainsi, dans ce travail, nous n'avons pas fait appel à ces stratégies.

|                         | $D_0(e)$                    | $T_0(e)$ | r <sub>e</sub> | ω                   | $\omega_e x_e$      | α <sub>e</sub>              | Produits             |
|-------------------------|-----------------------------|----------|----------------|---------------------|---------------------|-----------------------------|----------------------|
|                         | ( <b>cm</b> <sup>-1</sup> ) | (eV)     | (A)            | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | $(10^{-3} \text{ cm}^{-1})$ | de                   |
|                         |                             |          |                |                     |                     |                             | dissociation         |
| $F^{1}\Sigma^{+}$       | 1855                        | 45570    | 2,309          | 314                 | 24,9                | 12,1                        | $Zn(^{1}S)+O(^{1}S)$ |
| $E^1\Delta$             | 4678                        | 39521    | 2,057          | 579                 | 24,3                | 7,7                         | $Zn(^{3}P)+O(^{3}P)$ |
| $D^{1}\Sigma^{-}$       | 5726                        | 38392    | 1,895          | 467                 | 8.6                 | 6,5                         | $Zn(^{3}P)+O(^{3}P)$ |
| $f^3\Sigma^-$           | 6372                        | 37666    | 1,872          | 544                 | 1,1                 | 3,2                         | $Zn(^{3}P)+O(^{3}P)$ |
| $e^{3}\Delta$           | 7904                        | 36214    | 1,846          | 561                 | 5                   | 3,7                         | $Zn(^{3}P)+O(^{3}P)$ |
| $d^3\Sigma^+$           | 24842                       | 35004    | 1,834          | 604                 | 7,3                 | 4,0                         | $Zn(^{3}P)+O(^{1}D)$ |
| <i>С</i> <sup>1</sup> П | 23963                       | 34924    | 2,971          | 251                 | 0,6                 | 0,119*                      | $Zn(^{3}P)+O(^{3}P)$ |
| $B^{1}\Sigma^{+}$       | 13873                       | 30246    | 1,741          | 736                 | 7,6                 | 4,4                         | $Zn(^{3}P)+O(^{3}P)$ |
| <i>с</i> <sup>3</sup> П | 15889                       | 28229    | 2,482          | 336                 | 1,3                 | 0,53*                       | $Zn(^{3}P)+O(^{3}P)$ |
| $b^3\Sigma^+$           | 28229                       | 15042    | 1,791          | 560                 | 3,4                 | 3,7                         | $Zn(^{3}P)+O(^{3}P)$ |
| $A^{1}\Pi$              | 23793                       | 4960     | 1,828          | 590                 | 3,2                 | 3,2                         | $Zn(^{1}S)+O(^{1}D)$ |
| <i>а</i> <sup>3</sup> П | 10525                       | 2460     | 1,8436         | 584                 | 4,1                 | 4,016                       | $Zn(^{1}S)+O(^{3}P)$ |
| $X^{1}\Sigma^{+**}$     | 28778                       | 0        | 1,7047         | 738                 | 4,88                | 3,81                        | $Zn(^{1}S)+O(^{1}D)$ |

 Tableau 1 : Constantes spectroscopiques et niveaux quantiques électroniques retenus à partir des données Sakellaris et al [9].\*obtenu avec la relation (12).\*\* valeurs expérimentales [10, 11].

#### 2.b. Résultats des calculs et discussion

La structure électronique de ZnO a été étudiée en 2010 par Sakellaris et al [9]. Un bilan des études sur les constantes spectroscopiques est également donné dans cet article. Dans le tableau 1, nous donnons les états et les constantes spectroscopiques que nous prenons en compte dans le calcul des fonctions de partition et des propriétés thermodynamiques molaires.

Sur la figure 1, nous avons représenté les courbes de potentiel et les états de sortie correspondants des produits de dissociation. Nous pouvons noter que l'état fondamental de  $X^{1}\Sigma^{+}$  se dissocie vers un état excité de l'oxygène O(<sup>1</sup>D). Seul l'état  $a^{3}\Pi$  se dissocie vers les états fondamentaux du zinc Zn(<sup>1</sup>S) et de l'oxygène O(<sup>3</sup>P).



**Figure 1 :** Courbes de potentiel de Morse  $D'_e \left(1 - e^{\frac{-2*\beta(r-r_e)}{r_e}}\right)^2$  de ZnO obtenues à partir des constantes spectroscopiques tabulées (Tableau 1) et des enthalpies des produits de dissociation.

Afin d'évaluer l'influence du nombre de niveaux quantiques électroniques, nous calculons la capacité thermique à pression constante en effectuant les calculs avec les trois premiers niveaux quantiques  $X^{1}\Sigma$ ,  $a^{3}\Pi$  et  $A^{1}\Pi$  et comparons les résultats avec ceux obtenus avec les 13 niveaux quantiques considérés (Tableau 1).





A basse température, les niveaux quantiques les plus bas sont majoritairement peuplés puis avec l'augmentation de la température des niveaux quantiques de plus hautes énergies se peuplent. Ainsi, nous pouvons noter, sur la figure 2, que la capacité thermique à pression constante pour les niveaux quantiques considérés sont similaires aux basses températures. Puis, à partir d'une température d'environ 2500 K, les niveaux quantiques supérieurs  $b^3\Sigma^+$ ,  $c^3\Pi$ ... se peuplent et la capacité thermique augmente.

La valeur de l'énergie de dissociation de chaque niveau quantique peut atteindre des variations importantes suivant la méthode théorique utilisée pour la déterminer [9]. Dans le cas du niveau  $A^{1}\Pi$ , une variation de 10 % est atteinte entre la valeur la plus basse et la plus haute. Pour les états quantiques électroniques d'énergie plus basse, des mesures montrent que la valeur de la dissociation d'énergie atteint des variations de  $\pm 5$  %. Afin d'appréhender l'influence de ces variations, nous calculons la capacité thermique en sommant les niveaux de vibration sur un nombre maximum  $v_{max}$  variant de  $\pm 10$  % sur les valeurs obtenues à partir des énergies de dissociation du Tableau 1.

Puisque l'énergie de vibration intervient via la fonction exponentielle  $e^{\frac{hcG_e(v)}{kT}}$  de la fonction de partition, l'impact sera moindre si on ajoute des niveaux de vibration, alors que si on en soustrait, l'impact sera plus important. Ainsi, on observe sur la figure 3 que l'ajout de 10 % de niveau quantique de vibration supplémentaire n'est pas impactant sur les valeurs de la capacité thermique à pression constante. La suppression des niveaux quantiques de vibration est visible pour les températures comprises entre 5000 K et 17500 K.



Figure 3 : Capacités thermiques calculées avec ± 10 % de niveau quantique de vibration.

Nous représentons les courbes de potentiel moléculaire effectif obtenu par la relation (13) dans la figure 4. Nous observons une distorsion du potentiel d'interaction. C'est-à-dire que des niveaux quantiques de rotation supplémentaires se retrouvent au-dessus de l'énergie de dissociation du niveau concerné. Ces états quantiques forment des états qui peuvent être considérés comme quasi stables. Afin d'évaluer l'influence de ces niveaux sur le calcul des fonctions de partition, nous calculons pour chaque niveau de vibration la valeur du nombre quantique maximal qui ne dépasse pas l'énergie de dissociation. Nous utilisons la relation suivante :

$$G_e(v) + B_v J(J+1) - D_v J^2 (J+1)^2 = D_0(e) + G_e(0)$$
(15)

Dans le tableau 2, nous donnons une comparaison des nombres quantiques de rotation maximaux obtenus par les deux méthodes de calculs. Ainsi, nous trouvons, comme attendu, des nombres quantiques maximaux inférieurs avec la deuxième technique.



**Figure 4 :** Potentiels moléculaires effectifs pour différents nombres quantiques de rotation *J*.  $J_{lim} = 232$  correspond au dernier état appartenant aux états quasi stables.  $J_{215}$  correspond à l'état quantique de rotation obtenu par la méthode du potentiel effectif de l'état électronique  $a^3\Pi$  et de l'état de vibration v = 0.

| V  | J <sub>max</sub> (14) | $J_{max}(15)$ | V  | $J_{max}(14)$ | $J_{max}(15)$ |
|----|-----------------------|---------------|----|---------------|---------------|
| 0  | 215                   | 169           | 11 | 139           | 118           |
| 1  | 208                   | 165           | 12 | 131           | 112           |
| 2  | 201                   | 161           | 13 | 123           | 106           |
| 3  | 195                   | 157           | 14 | 115           | 99            |
| 4  | 188                   | 152           | 15 | 106           | 92            |
| 5  | 181                   | 148           | 16 | 97            | 84            |
| 6  | 174                   | 143           | 17 | 86            | 76            |
| 7  | 168                   | 138           | 18 | 75            | 67            |
| 8  | 161                   | 134           | 19 | 62            | 56            |
| 9  | 154                   | 128           | 20 | 47            | 42            |
| 10 | 146                   | 123           | 21 | 23            | 22            |

**Tableau 2 :** Comparaison des nombres quantiques maximaux de rotation obtenu par laméthode des potentiels moléculaires effectifs et par comparaison de l'énergie de dissociationpour le niveau électronique  $a^3 \Pi$ .

Suivant le raisonnement des états quantiques stables, nous pouvons déterminer un nombre quantique de rotation maximal pour lequel le puit de potentiel du potentiel effectif (13) disparait. Pour l'état,  $a^3\Pi$  nous représentons la courbe de potentiel correspondant à ce nombre quantique  $J_{max} = 232$ . Nous pouvons ainsi déterminer l'ensemble des nombres quantiques

limites pour chaque état électronique. Nous donnons ces valeurs dans le tableau 3. Nous pouvons noter qu'un nombre quantique de rotation  $J_{lim}$  est associé à chaque état électronique à la différence de la méthode des potentiels effectifs qui associe un nombre quantique maximum de rotation à tous les niveaux quantiques de vibration associés à chaque état électronique.

| état électronique       | <b>J</b> lim | état électronique | Jlim |
|-------------------------|--------------|-------------------|------|
| $X^{1}\Sigma^{+}$       | 337          | $d^3\Sigma^+$     | 336  |
| <i>а</i> <sup>3</sup> П | 232          | $e^{3}\Delta$     | 206  |
| $A^{1}\Pi$              | 328          | $f^3\Sigma^-$     | 192  |
| $b^3\Sigma^+$           | 355          | $D^{1}\Sigma^{-}$ | 180  |
| c <sup>3</sup> Π        | 363          | $E^{1}\Delta$     | 200  |
| $B^{1}\Sigma^{+}$       | 253          | $F^{1}\Sigma^{+}$ | 140  |
| С1П                     | 332          |                   |      |

**Tableau 3 :** Nombres quantiques limites en fonction des états quantiques électroniques.

En prenant en compte uniquement les niveaux quantiques de rotation dont les niveaux d'énergie correspondant sont inférieurs à l'énergie de dissociation du niveau électronique considéré, on observe que la capacité thermique est plus basse que celle obtenue avec la méthode des potentiels effectifs. En effet, les niveaux quantiques de rotation non pris en compte peuvent être chiffrés à plusieurs dizaines. Ainsi, en éliminant des niveaux quantiques de rotation sur chaque niveau de vibration, on élimine une capacité à conserver l'énergie de la molécule. La capacité thermique est donc plus basse.

A contrario, en prenant en compte tous les niveaux quantiques de rotation jusqu'à la limite de l'instabilité (Tableau 3, Figure 4), le nombre quantique de rotation limite ne dépendant pas des niveaux de vibration, des dizaines de niveaux quantiques de rotation sont ajoutés à chaque niveau de vibration. On ajoute des capacités à conserver l'énergie en ayant la possibilité de peupler ces niveaux supplémentaires. La capacité thermique est donc plus importante.

Sur la figure 5, nous présentons les résultats en utilisant les trois séries de nombres quantiques, celle obtenue par limitation de l'énergie de dissociation, celle obtenue par la méthode des potentiels effectifs et celle obtenue par le nombre limite des états stables. Nous remarquons une augmentation de la capacité thermique en prenant en compte les niveaux quantiques de rotation jusqu'à la limite de l'instabilité. Cette augmentation est relativement plus importante entre les températures comprises entre 3000 K et 10000 K. En éliminant des niveaux quantiques de rotation, on retrouve un abaissement de la capacité thermique tous le long de la température à partir de 3000 K. Pour les températures inférieures à 3000 K, la capacité thermique est similaire pour toutes les méthodes. En effet, seuls les niveaux quantiques correspondant aux basses énergies sont peuplés.



**Figure 5 :** Capacités thermiques calculées avec les niveaux de rotation des états stables correspondant à une énergie inférieure à l'énergie de dissociation (noir) ; calculée avec la méthode des potentiels effectifs (rouge), calculée en prenant en compte tous les niveaux quantiques stables et quasi stables (bleu).

#### 3. Résultats

Dans la littérature, plusieurs approches ont été utilisées pour obtenir la fonction de partition interne des molécules diatomiques. Dans les tables thermochimiques de Gurvich et al [6] les valeurs limites des nombres quantiques de rotation sont calculés en utilisant une méthode équivalente à la méthode des potentiels effectifs mais en utilisant un potentiel de Hulbert-Hirschfelder. Dans les calculs, les données spectroscopiques  $B_v$  et  $D_v$  sont, respectivement, extrapolées et obtenus par une formule approximative [6].

Dans les tables du Janaf [12], un développement limité est utilisé pour obtenir les propriétés thermodynamiques molaires. Par conséquent les nombres quantiques maximaux de vibration et de rotation ne sont pas utilisés. Au niveau des états électroniques seuls les premiers niveaux sont pris en compte.

Dans les travaux, qui concernent essentiellement les molécules créées lors des rentrées atmosphériques, de Drellishak et al [13], de Capitelli et al [14], de Babou et al [7], les auteurs utilisent la méthode des potentiels effectifs avec un potentiel de Morse. Cependant, Liang et al [8] utilisent la méthode des potentiels effectifs avec un potentiel R.K.R..

L'ensemble des travaux suscités nécessitent une connaissance précise des fonctions de partition. Ainsi, nous proposons les résultats des propriétés thermodynamiques molaires de ZnO obtenues en utilisant la méthode des potentiels effectifs avec un potentiel de Morse (Tableau 4). Pour l'enthalpie de formation à 0 K, nous la déduisons de l'énergie de dissociation  $D_0$  du premier état quantique électronique  $X^1\Sigma^+$  et des enthalpies de formation du zinc gazeux et de l'oxygène monoatomique gazeux dans l'état quantique  ${}^1D$  [12]. En écrivant la réaction de dissociation :

$$ZnO(X^{1}\Sigma^{+}) \to Zn\left( {}^{1}S\right) + O\left( {}^{1}D\right)$$

Ainsi

$$\Delta H_{f,0K}^{0}(Zn0) = \Delta H_{f,0K}^{0}(Zn) + \Delta H_{f,0K}^{0}(0) + E(O({}^{1}D)) - D_{0}$$

 $\Delta H^0_{f,0K} (ZnO) = 129,89 + 246,79 + 15867,862 * 0,01196266 - 28778 * 0,01196266$ = 222,240 kJ.mol<sup>-1</sup>

Pour l'incertitude  $\Delta(\Delta H^0_{f,0K}(ZnO)) = 0,20 + 0,10 + 0,04 * 96,4846 = \pm 4,5 kj/mol$ 

Finalement,

$$\Delta H^0_{f,0K} (ZnO) = 222,2 \pm 4,5 \ kJ. \ mol^{-1}$$

#### Conclusion

Dans cet article, nous avons déterminé les propriétés thermodynamiques molaires de l'oxyde de zinc gazeux. Cette molécule joue un rôle majeur lors de la nucléation durant la croissance de nanostructures. Nous avons pu montrer que la détermination des propriétés thermodynamiques molaires dépendait grandement de la fonction de partition. Cette dernière nécessite une sommation sur l'ensemble des niveaux quantiques de rotation, de vibration et d'excitation électronique. Nous avons montré l'influence du choix des limites de sommation sur la capacité calorique à pression constante. L'influence est plus importante entre les températures de 3000 K et 10000 K. C'est dans cette zone que le début de la nucléation devrait avoir lieu et que les espèces diatomiques sont les plus présentes. De plus dans le plasma généré par la torche à plasma de nombreuses espèces chimiques peuvent se former. Nous devons étendre nos calculs à d'autres espèces chimiques diatomiques et polyatomiques qui ne sont pas disponibles dans les tables de thermochimie classique. Ce travail fastidieux est nécessaire afin d'étudier correctement les phénomènes physico-chimiques ayant lieu durant le traitement thermocinétique des solutions de précurseurs injectés dans le jet de plasma d'arc.

| Température<br>(K) | $c_p^0$<br>(IK-i mol-i) | s <sup>0</sup><br>(J.K <sup>-1</sup> .mol <sup>-1</sup> ) | g <sup>0</sup><br>(k.I.mol <sup>-1</sup> ) | h <sup>0</sup><br>(k.I.mol <sup>-1</sup> ) | Zint                     |
|--------------------|-------------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------|
| 100                | 29,135                  | 191,255                                                   | -16,217                                    | 2,909                                      | 155,087                  |
| 200                | 30,353                  | 211,710                                                   | -36,475                                    | 5,867                                      | 311,645                  |
| 298,15             | 32,476                  | 224,224                                                   | -57,903                                    | 8,950                                      | 476,498                  |
| 300                | 32,515                  | 224,425                                                   | -58,318                                    | 9,010                                      | 479,785                  |
| 500                | 37,772                  | 234,079                                                   | -105.081                                   | 12,371                                     | 891,590                  |
| 600                | 41,773                  | 249,400                                                   | -129,663                                   | 19,977                                     | 1155,150                 |
| 700                | 46,111                  | 256,211                                                   | -154,947                                   | 24,401                                     | 1476,880                 |
| 800                | 49,898                  | 262,689                                                   | -180,894                                   | 29,257                                     | 1876,250                 |
| 900                | 52,551                  | 268,808                                                   | -207,472                                   | 34,454                                     | 2374,650                 |
| 1100               | 53,942                  | 274,508                                                   | -234,642                                   | 39,867                                     | 2993,990                 |
| 1200               | 53.836                  | 284,537                                                   | -290,577                                   | 50,867                                     | 4681.070                 |
| 1300               | 52,964                  | 288,884                                                   | -319,252                                   | 56,297                                     | 5789,360                 |
| 1400               | 51,876                  | 292,831                                                   | -348,341                                   | 61,623                                     | 7099,390                 |
| 1500               | 50,724                  | 296,425                                                   | -377,806                                   | 66,831                                     | 8628,620                 |
| 1600               | 49,595                  | 299,708                                                   | -407,615                                   | 71,918                                     | 10393,400                |
| 1800               | 48,552                  | 305,498                                                   | -468 151                                   | 81 745                                     | 12408,900                |
| 1900               | 46,663                  | 308.069                                                   | -498,831                                   | 86,500                                     | 17247.400                |
| 2000               | 45,853                  | 310,460                                                   | -529,759                                   | 91,160                                     | 20095,200                |
| 2100               | 45,116                  | 312,691                                                   | -560,918                                   | 95,733                                     | 23243,200                |
| 2200               | 44,444                  | 314,781                                                   | -592,293                                   | 100,225                                    | 26701,200                |
| 2300               | 43,829                  | 316,744                                                   | -623,870                                   | 104,642                                    | 30477,500                |
| 2400               | 42,739                  | 320.342                                                   | -687.586                                   | 113,270                                    | 39014.300                |
| 2600               | 42,255                  | 321,997                                                   | -719,703                                   | 117,490                                    | 43786,500                |
| 2700               | 41,805                  | 323,569                                                   | -751,982                                   | 121,653                                    | 48901,000                |
| 2800               | 41,388                  | 325,064                                                   | -784,414                                   | 125,763                                    | 54361,300                |
| 2900               | 40,999                  | 326,488                                                   | -816,993                                   | 129,824                                    | 60170,400                |
| 3100               | 40,039                  | 329 152                                                   | -882 561                                   | 135,838                                    | 72842 700                |
| 3200               | 39,996                  | 330,400                                                   | -915,539                                   | 141,742                                    | 79708.500                |
| 3300               | 39,711                  | 331,599                                                   | -948,639                                   | 145,639                                    | 86928,200                |
| 3400               | 39,450                  | 332,753                                                   | -981,857                                   | 149,502                                    | 94501,800                |
| 3500               | 39,212                  | 333,864                                                   | -1015,190                                  | 153,337                                    | 102429,000               |
| 3600               | 38,995                  | 334,937                                                   | -1048,630                                  | 157,144                                    | 110/10,000               |
| 3800               | 38,627                  | 336.978                                                   | -1115 820                                  | 164 693                                    | 128328.000               |
| 3900               | 38,473                  | 337,951                                                   | -1149,570                                  | 168,441                                    | 137664,000               |
| 4000               | 38,340                  | 338,896                                                   | -1183,410                                  | 172,173                                    | 147350,000               |
| 4100               | 38,226                  | 339,815                                                   | -1217,350                                  | 175,895                                    | 157386,000               |
| 4200               | 38,131                  | 340,710                                                   | -1251,370                                  | 179,607                                    | 167770,000               |
| 4400               | 37,995                  | 342.433                                                   | -1319.690                                  | 185,514                                    | 189583.000               |
| 4500               | 37,953                  | 343,265                                                   | -1353,970                                  | 190,720                                    | 201012,000               |
| 4600               | 37,928                  | 344,079                                                   | -1388,340                                  | 194,424                                    | 212788,000               |
| 4700               | 37,918                  | 344,877                                                   | -1422,790                                  | 198,132                                    | 224913,000               |
| 4800               | 37,924                  | 345,659                                                   | -1457,320                                  | 201,846                                    | 237386,000               |
| 5000               | 37,944                  | 340,420                                                   | -1491,920                                  | 203,308                                    | 250210,000               |
| 5100               | 38.025                  | 347,922                                                   | -1561.360                                  | 213.046                                    | 276914.000               |
| 5200               | 38,084                  | 348,652                                                   | -1596,190                                  | 216,805                                    | 290797,000               |
| 5300               | 38,155                  | 349,371                                                   | -1631,090                                  | 220,579                                    | 305038,000               |
| 5400               | 38,237                  | 350,080                                                   | -1666,060                                  | 224,371                                    | 319639,000               |
| 5600               | 38,328                  | 351,469                                                   | -1736 210                                  | 228,182                                    | 349935.000               |
| 5700               | 38,538                  | 352,151                                                   | -1771,400                                  | 235,864                                    | 365636,000               |
| 5800               | 38,654                  | 352,825                                                   | -1806,640                                  | 239,738                                    | 381712,000               |
| 5900               | 38,776                  | 353,491                                                   | -1841,960                                  | 243,635                                    | 398166,000               |
| 6000               | 38,905                  | 354,150                                                   | -1877,340                                  | 247,556                                    | 415004,000               |
| 6200               | 39,038                  | 355 447                                                   | -1912,790                                  | 255 471                                    | 432230,000               |
| 6300               | 39,315                  | 356,087                                                   | -1983,880                                  | 259,467                                    | 467869,000               |
| 6400               | 39,457                  | 356,720                                                   | -2019,520                                  | 263,488                                    | 486293,000               |
| 6500               | 39,601                  | 357,347                                                   | -2055,220                                  | 267,535                                    | 505127,000               |
| 6700               | 39,745                  | 357,969                                                   | -2090,990                                  | 271,608                                    | 524378,000               |
| 6800               | 40.034                  | 359,197                                                   | -2162,710                                  | 279,830                                    | 564156.000               |
| 6900               | 40,176                  | 359,802                                                   | -2198,660                                  | 283,979                                    | 584696,000               |
| 7000               | 40,316                  | 360,403                                                   | -2234,670                                  | 288,152                                    | 605680,000               |
| 7100               | 40,453                  | 360,998                                                   | -2270,740                                  | 292,350                                    | 627113,000               |
| 7200               | 40,587                  | 362 174                                                   | -2306,870                                  | 296,570                                    | 671356.000               |
| 7400               | 40,843                  | 362,754                                                   | -2379,300                                  | 305,079                                    | 694180.000               |
| 7500               | 40,963                  | 363,329                                                   | -2415,600                                  | 309,366                                    | 717482,000               |
| 7600               | 41,078                  | 363,900                                                   | -2451,970                                  | 313,672                                    | 741270,000               |
| 7700               | 41,188                  | 364,465                                                   | -2488,380                                  | 317,998                                    | 765549,000               |
| 7900               | 41,291                  | 365,020                                                   | -2524,800                                  | 322,341                                    | 790327,000<br>815612,000 |
| 8000               | 41.479                  | 366.132                                                   | -2597.980                                  | 331.078                                    | 841409.000               |
| 8100               | 41,562                  | 366,677                                                   | -2634,620                                  | 335,469                                    | 867727,000               |
| 8200               | 41,638                  | 367,218                                                   | -2671,310                                  | 339,874                                    | 894572,000               |
| 8300               | 41,707                  | 367,753                                                   | -2708,060                                  | 344,290                                    | 921950,000               |
| 8500               | 41,768                  | 368 909                                                   | -2/44,860                                  | 348,/18                                    | 949868,000               |
| 8600               | 41.868                  | 369.328                                                   | -2818.620                                  | 357.601                                    | 1007350.000              |
| 8700               | 41,906                  | 369,843                                                   | -2855,580                                  | 362,054                                    | 1036930,000              |
| 8800               | 41,937                  | 370,353                                                   | -2892,590                                  | 366,513                                    | 1067070,000              |
| 8900               | 41,960                  | 370,857                                                   | -2929,650                                  | 370,977                                    | 1097780,000              |
| 9000               | 41,976                  | 3/1,356                                                   | -2966,760                                  | 379.014                                    | 1129070,000              |
| 9200               | 41,985                  | 372.339                                                   | -3041.130                                  | 384.384                                    | 1193400.000              |
| 9300               | 41,978                  | 372,822                                                   | -3078,390                                  | 388,855                                    | 1226450,000              |
| 9400               | 41,964                  | 373,300                                                   | -3115,700                                  | 393,324                                    | 1260100,000              |
| 9500               | 41,943                  | 373,773                                                   | -3153,050                                  | 397,791                                    | 1294350,000              |
| 9600               | 41,916                  | 374,240                                                   | -3190,450                                  | 402,255                                    | 1329210,000              |
| 9800               | 41.840                  | 375.159                                                   | -3265.390                                  | 400,714                                    | 1400760.000              |
| 9900               | 41,793                  | 375,611                                                   | -3302,930                                  | 415,616                                    | 1437470,000              |
| 10000              | 41,739                  | 376,057                                                   | -3340,510                                  | 420,055                                    | 1474790,000              |

| Température<br>(K) | $c_p^0$          | s <sup>0</sup>     | g <sup>0</sup><br>(k I molet) | h <sup>0</sup>     | Zint                       |
|--------------------|------------------|--------------------|-------------------------------|--------------------|----------------------------|
| 10100              | 41,680           | 376,498            | -3378,140                     | 424,487            | 1512740,000                |
| 10200              | 41,614           | 376,933            | -3415,810                     | 428,910            | 1551320,000                |
| 10300              | 41,344           | 377,789            | -3433,330                     | 435,522            | 1630380,000                |
| 10500              | 41,387           | 378,209            | -3529,080                     | 442,114            | 1670870,000                |
| 10600              | 41,301           | 378,624            | -3566,930                     | 446,492            | 1711990,000                |
| 10800              | 41,116           | 379,439            | -3642,730                     | 455,208            | 1796170,000                |
| 10900              | 41,017           | 379,839            | -3680,700                     | 459,545            | 1839220,000                |
| 11000              | 40,914           | 380,233            | -3718,700                     | 463,868            | 1882920,000                |
| 11200              | 40,698           | 381,008            | -3794,830                     | 472,466            | 1972260,000                |
| 11300              | 40,584           | 381,388            | -3832,940                     | 476,741            | 2017900,000                |
| 11400              | 40,468           | 381,763            | -38/1,100                     | 481,000            | 2064200,000 2111140.000    |
| 11600              | 40,226           | 382,499            | -3947,530                     | 489,465            | 2158740,000                |
| 11700              | 40,102           | 382,861            | -3985,800                     | 493,671            | 2206980,000                |
| 11900              | 39,973           | 383,569            | -4024,100                     | 502.029            | 2305410.000                |
| 12000              | 39,715           | 383,916            | -4100,810                     | 506,180            | 2355600,000                |
| 12100              | 39,583           | 384,259            | -4139,220                     | 510,313            | 2406440,000                |
| 12200              | 39,313           | 384,932            | -4216,140                     | 518,521            | 2510050,000                |
| 12400              | 39,175           | 385,262            | -4254,650                     | 522,596            | 2562820,000                |
| 12500              | 39,037           | 385,588            | -4293,200                     | 526,651<br>530,688 | 2616230,000                |
| 12000              | 38,758           | 386,227            | -4370,380                     | 534,704            | 2724980,000                |
| 12800              | 38,617           | 386,540            | -4409,020                     | 538,701            | 2780300,000                |
| 12900              | 38,476           | 386,850            | -4447,680<br>-4486.390        | 542,679<br>546.636 | 2836260,000 2892860.000    |
| 13100              | 38,191           | 387,457            | -4525,120                     | 550,574            | 2950080,000                |
| 13200              | 38,049           | 387,755            | -4563,880                     | 554,493            | 3007920,000                |
| 13400              | 37,906           | 388,049<br>388.340 | -4002,670<br>-4641.490        | 562,270            | 3125480.000                |
| 13500              | 37,620           | 388,627            | -4680,330                     | 566,130            | 3185190,000                |
| 13600              | 37,477           | 388,910            | -4719,210                     | 569,970            | 3245510,000                |
| 13700              | 37,334           | 389,190            | -4797.050                     | 577,591            | 3367980,000                |
| 13900              | 37,050           | 389,740            | -4836,010                     | 581,373            | 3430130,000                |
| 14000              | 36,908           | 390,010            | -4875,000                     | 585,136            | 3492870,000                |
| 14100              | 36,626           | 390,278            | -4914,010                     | 592,605            | 3620140,000                |
| 14300              | 36,486           | 390,799            | -4992,120                     | 596,311            | 3684660,000                |
| 14400              | 36,346           | 391,056            | -5031,210                     | 599,999            | 3749760,000                |
| 14600              | 36,069           | 391,561            | -5109,470                     | 607,318            | 3881710,000                |
| 14700              | 35,932           | 391,809            | -5148,640                     | 610,951            | 3948540,000                |
| 14800              | 35,795           | 392,054            | -5187,840                     | 614,565            | 4015940,000 4083900.000    |
| 15000              | 35,524           | 392,536            | -5266,300                     | 621,741            | 4152420,000                |
| 15100              | 35,390           | 392,772            | -5305,560                     | 625,302            | 4221490,000                |
| 15200              | 35,237           | 393,000            | -5384,160                     | 632,373            | 4361280,000                |
| 15400              | 34,994           | 393,466            | -5423,500                     | 635,883            | 4431980,000                |
| 15500              | 34,864           | 393,692            | -5462,850                     | 639,376<br>642,853 | 4503220,000                |
| 15700              | 34,607           | 394,137            | -5541,640                     | 646,313            | 4647290,000                |
| 15800              | 34,480           | 394,356            | -5581,060                     | 649,756            | 4720100,000                |
| 16000              | 34,354           | 394,572            | -5620,510                     | 656,596            | 4793430,000                |
| 16100              | 34,105           | 394,997            | -5699,470                     | 659,992            | 4941620,000                |
| 16200              | 33,983           | 395,207            | -5738,980                     | 663,372            | 5016460,000                |
| 16400              | 33,741           | 395,619            | -5818,060                     | 670,087            | 5167630,000                |
| 16500              | 33,622           | 395,821            | -5857,630                     | 673,423            | 5243940,000                |
| 16600              | 33,504           | 396,022            | -5897,220                     | 676,743            | 5320730,000                |
| 16800              | 33,271           | 396,417            | -5976,470                     | 683,340            | 5475730,000                |
| 16900              | 33,157           | 396,612            | -6016,120                     | 686,617            | 5553920,000                |
| 17100              | 32,931           | 396,995            | -6095,480                     | 693,130            | 5711680,000                |
| 17200              | 32,820           | 397,183            | -6135,190                     | 696,365            | 5791240,000                |
| 17300<br>17400     | 32,710<br>32.601 | 397,370            | -6174,920<br>-6214.660        | 699,588<br>702,796 | 5871240,000<br>5951670.000 |
| 17500              | 32,493           | 397,738            | -6254,430                     | 705,992            | 6032530,000                |
| 17600              | 32,386           | 397,920            | -6294,210                     | 709,175            | 6113820,000                |
| 17800              | 32,201           | 398,277            | -6373,830                     | 715,503            | 6277660,000                |
| 17900              | 32,073           | 398,453            | -6413,670                     | 718,648            | 6360200,000                |
| 18000 18100        | 31,971 31.870    | 398,628<br>398.801 | -6453,520<br>-6493.390        | 721,780            | 6443150,000<br>6526490.000 |
| 18200              | 31,770           | 398,972            | -6533,280                     | 728,010            | 6610230,000                |
| 18300              | 31,672           | 399,142            | -6573,190                     | 731,107            | 6694350,000                |
| 18500              | 31,477           | 399,310            | -6653,050                     | 737,266            | 6863750,000                |
| 18600              | 31,382           | 399,642            | -6693,000                     | 740,329            | 6949020,000                |
| 18700              | 31,287           | 399,805            | -6732,980<br>-6772 960        | 743,381<br>746 421 | 7034650,000 7120640.000    |
| 18900              | 31,101           | 400,128            | -6812,970                     | 749,451            | 7206990,000                |
| 19000              | 31,010           | 400,287            | -6852,990                     | 752,470            | 7293700,000                |
| 19100              | 30,920           | 400,445 400.602    | -0893,030<br>-6933.080        | 758.479            | 7468150.000                |
| 19300              | 30,742           | 400,757            | -6973,150                     | 761,466            | 7555880,000                |
| 19400              | 30,655           | 400,911            | -7013,230                     | 764,444            | 7643940,000                |
| 19500              | 30,508           | 401,064            | -7033,330                     | 770,370            | 7821050.000                |
| 19700              | 30,399           | 401,365            | -7133,570                     | 773,319            | 7910080,000                |
| 19800              | 30,315           | 401,514            | -7173,720                     | 776,258            | 7999420,000                |
| 20000              | 30,255           | 401,808            | -7254,050                     | 782,109            | 8179030,000                |

**Tableau 4 :** Propriétés thermodynamiques molaires, capacité thermique  $C_p^{\ 0}(J.K^{-1}.mol^{-1})$ , entropie  $s^0(J.K^{-1}.mol^{-1})$ , enthalpielibre  $g^0(kJ.mol^{-1})$ , enthalpie  $h^0(kJ.mol^{-1})$ , fonction de partition interne.

#### **Remerciements :**

Ce travail est soutenu par l'ANR : « Projection plasma de revêtements nanostructurés pour la désinfection – PASSION », ANR-22-CE51-003.

#### Références

- [1] Z. Yu, H. Moussa, M. Liu, R. Schneider, M. Moliere, H. Liao, (2018), "Solution precursor plasma spray process as an alternative rapid one-step route for the development of hierarchical ZnO films for improved photocatalytic degradation", Ceramics International, Vol. 44, Issue 2, P. 2085-2092. <u>https://doi.org/10.1016/j.ceramint.2017.10.156</u>
- [2] E. S. Jang, J.-H. Won, S.-J. Hwang, and J.-H. Choy, (2006), "Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity", Adv. Mater., Vol 18, p 3309–3312. <u>https://doi.org/10.1002/adma.200601455</u>
- [3] R. B. Saunders, E. McGlynn, M. O. Henry, Published: September 07, (2011), "Theoretical Analysis of Nucleation and Growth of ZnO Nanostructures in Vapor Phase Transport Growth", Cryst. Growth, Vol. 11, p 4581–4587. https://doi.org/10.1021/cg200828y
- [4] G. Herzberg, (1950), "Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules", second edition, editeur D. Van Nostrand Company. <u>https://archive.org/details/molecularspectra032774mbp/mode/2up</u>
- [5] C. L. Pekeris, (1934), "The Rotation-Vibration Coupling in Diatomic Molecules", Phys. Rev., Vol 45, p 98-103.
   https://doi.org/10.1103/PhysRev.45.98
- [6] L.V. Gurvich, I.V. Veyts, C.B. Alcock, (1991), "Thermodynamic Properties of Individual Substance", Hemisphere.
- [7] Y. Babou, Ph. Rivière, M.-Y. Perrin, A. Soufiani, (2009), "High-Temperature and Nonequilibrium Partition Function and Thermodynamic Data of Diatomic Molecules", Int J Thermophys Vol. 30, p 416–438.

https://doi.org/10.1007/s10765-007-0288-6

- [8] R. Liang, Y. Liu, F. Li, (2021), "Partition functions of atomic and diatomic species in hightemperature atmospheric plasmas", Contrib. Plasma Phys.;e202100036, p 1-12 <u>https://doi.org/10.1002/ctpp.202100036</u>
- [9] C. N. Sakellaris, A. Papakondylis, and A. Mavridis, (2010), "Ab initio Study of the Electronic Structure of Zinc Oxide and its Ions, ZnO, Ground and Excited States", J Phys Chem A., Vol 114, p 9333-9341

https://doi.org/10.1021/jp104764d

- [10] L.N. Zack, R.L. Pulliam, L.M. Ziurys, (2009), "The pure rotational spectrum of ZnO in the X<sup>1</sup>Σ<sup>+</sup> and a<sup>3</sup>Π<sub>i</sub> states", Vol 256, Issue 2, p 186-191. <u>https://doi.org/10.1016/j.jms.2009.04.001</u>
- [11] D. E. Clemmer, N. F. Dalleska, P. B. Armentrout, (1991), "Reaction of Zn<sup>+</sup> with NO<sub>2</sub>. The gasphase thermochemistry of ZnO", The Journal of Chemical Physics 95, p 7263-7268 <u>http://dx.doi.org/10.1063/1.461403</u>
- [12] Macolm W. Jase, (1985), "Thermochemical Table", NIST-JANAF. https://janaf.nist.gov/janaf4pdf.html
- [13] K. S. Drellishak, D. P. Aeschliman, and Ali Bulent Cambel, (1965), "Partition Functions and Thermodynamic Properties of Nitrogen and Oxygen Plasmas", Physics of Fluids, Vol 8, N°9, p1590-1600. http://dx.doi.org/10.1063/1.1761469
- [14] M. Capitelli, G. Colonna, A. D'Angola, (2011), "Fundamental Aspects of Plasma Chemical Physics", Springer Science.