Les Diptères comme outil d’évaluation de l’état du corridor rivulaire – premières expérimentations sur des cours d’eau du Massif central, et comparaison avec des cours d’eau de Bretagne et des Pyrénées

Auteurs-es

  • Frederic LABAT Aquabio

DOI :

https://doi.org/10.52497/biom.v3i1.303

Mots-clés :

Ripisylve, Traits fonctionnels, Ruisseaux, Limoniidae, Empidoidea, Mycetophilidae

Résumé

Les corridors rivulaires sont les habitats les plus diversifiés et complexes du globe, sièges de nombreux processus indispensables au maintien de la qualité de l’eau et de la biodiversité. Les Diptères, second plus vaste groupe d’espèces d’insectes dans le monde, possèdent des exigences écologiques susceptibles d’exprimer la complexité des habitats rivulaires et des échanges hydriques de subsurface. De plus, il s’agit du groupe le plus abondant et le plus diversifié de nos corridors rivulaires. Ils occupent donc un rôle majeur dans les réseaux trophiques des cours d’eau et des écosystèmes terrestres riverains. Une méthode rapide d’échantillonnage des imagos de Diptères rivulaires ou aquatiques a été appliquée sur onze stations dont cinq du Massif central, tandis que la qualité de leur corridor rivulaire a été caractérisée à partir de l’indice IBCR. Les relations entre communautés de Diptères et caractéristiques du corridor rivulaire ont été analysées. Pour cela, une approche taxonomique traditionnelle et une approche fonctionnelle basée sur les traits bio-écologiques de leurs larves (alimentation et affinité à l’eau) ont été utilisées. 252 taxons de Diptères, dont sept espèces citées pour la première fois en France ont été identifiés. Le climat, l’état de conservation et la diversité des écoulements des cours d’eau du Puy-de-Dôme semblent particulièrement favorables aux communautés de Diptères rivulaires. Nos résultats indiquent qu’un corridor rivulaire plus ancien, plus large et disposant d’une dynamique fluviale favorisant une mosaïque complexe d’habitats accueille une plus grande diversité d’espèces et de modes alimentaires et d’affinités à l’eau des larves. De plus, l’échantillonnage des Diptères donne des indications sur la capacité d’accueil des habitats hygropétriques et intertidaux, permettant de mieux valoriser les travaux de restauration hydromorphologique.

Références

Adler P. & Courtney G., 2019. Ecological and Societal Services of Aquatic Diptera. Insects 10(3) : 70. https://doi.org/10.3390/insects10030070

AFNOR., 2004. NF T90-350 - Détermination de l’indice biologique global normalisé (IBGN). La Plaine Saint-Denis : AFNOR, 17 p.

Borcard D., Gillet F. & Legendre P., 2011. Numerical Ecology with R. New York, NY : Springer New York, 318 p. https://doi.org/10.1007/978-1-4419-7976-6

Brunhes J. & Dufour C., 1992. Etudes structurales et dynamiques sur les écosystèmes de tourbières acides : 3. Le peuplement des tipulides (Diptera, Tipulidae). Bulletin d’écologie 23(1‑2) : 17‑26.

Brunhes J. & Villepoux O., 1990. Études structurales et dynamiques sur les écosystèmes de tourbières acides : 2. Le peuplement des Diptères limonides. Bulletin d’écologie 21(4) : 91‑104.

Buffington J.M. & Tonina D., 2009. Hyporheic Exchange in Mountain Rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange: Channel morphology and hyporheic exchange. Geography Compass 3(3) : 1038‑1062. https://doi.org/10.1111/j.1749-8198.2009.00225.x

Burbank J., Drake D. & Power M., 2022. Seasonal consumption of terrestrial prey by a threatened stream fish is influenced by riparian vegetation. Endangered Species Research 47 : 15‑27. https://doi.org/10.3354/esr01161

Céréghino R., Oertli B., Bazzanti M., Coccia C., Compin A., Biggs J., Bressi N., Grillas P., Hull A., Kalettka T. & Scher O., 2011. Biological traits of European pond macroinvertebrates. Hydrobiologia 689(1) : 51‑61. https://doi.org/10.1007/s10750-011-0744-y

Chevenet F., Dolédec S. & Chessel D., 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31(3) : 295‑309. https://doi.org/10.1111/j.1365-2427.1994.tb01742.x

Claude J. & Cédric V., 2017. Syrph the Net : une méthode d’évaluation mesurant l’impact de la gestion d’espaces naturels testée par un réseau de gestionnaires. Dans : Les Invertébrés dans la conservation et la gestion des espaces naturels - Actes du colloque de Toulouse du 13 mai au 16 mai 2015. Toulouse, p. 105‑110.

Datry T., Dole-Olivier M.-J., Marmonier P., Claret C., Perrin J., Lafont M. & Breil P., 2008. La zone hyporhéique, une composante à ne pas négliger dans l’état des lieux et la restauration des cours d’eau. Ingéniéries 54 : 3‑18.

Drake C. M., Godfrey A., Hewitt S. M. & Parker J., 2007. Fly Assemblages of Sandy Exposed Riverine Sediment. Environment Agency, Natural England, Scottish Environment Protection Agency, John Spedan Lewis Foundation, 184 p.

Drake M., 2001. The importance of temporary waters for Diptera (true-flies). Freshwater Forum 17 : 26‑39.

Eveling D. W., Wilson R. N., Gillespie E. S. & Bataillé A., 1990. Environmental effects on sporocarp counts over fourteen years in a forest area. Mycological Research 94(7) : 998‑1002. https://doi.org/10.1016/S0953-7562(09)81320-8

France Nature Environnement Auvergne Rhône-Alpes., 2022. Ripisylves - Biodiversité & Connectivité. Ripisylves - Biodiversité & Connectivité https://www.fne-aura.org/ripisylves/ Consulté le 22/6/2022.

Galili T., 2015. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31(22) : 3718‑3720. https://doi.org/10.1093/bioinformatics/btv428

Garnier E., Cortez J., Billès G., Navas M.-L., Roumet C., Debussche M., Laurent G., Blanchard A., Aubry D., Bellmann A., Neill C. & Toussaint J.-P., 2004. Plant Functional Markers Capture Ecosystem Properties during Secondary Succession. Ecology 85(9) : 2630‑2637.

Glaeser J. A. & Smith K. T., 2013. Decay fungi of riparian trees in the Southwestern U.S. Western Arborist Fall : 40‑50.

Gounand I., Harvey E., Little C. J. & Altermatt F., 2018. Meta-Ecosystems 2.0: Rooting the Theory into the Field. Trends in Ecology & Evolution 33(1) : 36‑46. https://doi.org/10.1016/j.tree.2017.10.006

Greenwood M., 2007. The population dynamics of a riparian spider: interactive effects of flow-related disturbance on cross-ecosystem subsidies and spider habitat. University of Canterbury, 136 p.

Hagen E. M. & Sabo J. L., 2014. Temporal variability in insectivorous bat activity along two desert streams with contrasting patterns of prey availability. Journal of Arid Environments 102 : 104‑112. https://doi.org/10.1016/j.jaridenv.2013.11.016

Hering D., 1997. Riparian ground beetles (Coeloptera, Carabidae) preying on aquatic invertebrates: a feeding strategy in alpine floodplains. Oecologia 111 : 261‑270.

Hutson A. M., Ackland D. M. & Kidd L. N., 1980. Mycetophilidae (Bolitophilinae, Ditomyiinae, Diadocidiinae, Keroplatinae, Sciophilinae and Manotinae) Diptera, Nematocera. London : Royal Entomological Society of London, 114 p.

Ivković M., Miliša M., Baranov V. & Mihaljević Z., 2015. Environmental drivers of biotic traits and phenology patterns of Diptera assemblages in karst springs: The role of canopy uncovered. Limnologica 54 : 44‑57. https://doi.org/10.1016/j.limno.2015.09.001

Iwata T., Urabe J. & Mitsuhashi H., 2010. Effects of Drainage-Basin Geomorphology on Insectivorous Bird Abundance in Temperate Forests: Stream Channel Networks and Bird Distribution. Conservation Biology 24(5) : 1278‑1289. https://doi.org/10.1111/j.1523-1739.2010.01493.x

Jackson A. K., Eagles-Smith C. A. & Robinson W. D., 2021. Differential reliance on aquatic prey subsidies influences mercury exposure in riparian arachnids and songbirds. Ecology and Evolution 11(11) : 7003‑7017. https://doi.org/10.1002/ece3.7549

Jamieson G., 1997. Development of Methodology to Assess the Spatial Limits of the Terrestrial Environments used by Riparian Fish-Food Invertebrates. Parksville, BC : Forest Renewal BC, 22 p.

Janssen P., Evette A., Bergès L., Gonin P., Larrieu L., Dajoux M., Dupont S., Gardien S., Gilles C. & Ladet A., 2021. Évaluer la qualité des boisements riverains avec l’Indice de Biodiversité et de Connectivité des Ripisylves (IBCR) : une étude de cas avec les communautés d’oiseaux. Naturae (21). https://doi.org/10.5852/naturae2021a21

Komonen A., Niemi M. E. & Junninen K., 2008. Lakeside riparian forests support diversity of wood fungi in managed boreal forests. Canadian Journal of Forest Research 38(10) : 2650‑2659. https://doi.org/10.1139/X08-105

Krivosheina N. P., Zaitzev A. I. & Yakovlev E. B., 1986. Insects as decomposers of fungi in the forest of the European part of USSR [Insects inhabiting fruiting bodies of macrofungi in the forest zone of the European part of USSR.]. Moscow : Nauka, 309 p.

Kurina O. & Grootaert P., 2016. Fungus gnats in the Botanical garden Jean Massart on the outskirts of Brussels: 52 new country records and a pictorial atlas of the genera (Diptera: Sciaroidea). Belgian Journal of Entomology 44 : 1‑34.

Labat F., 2021. Le macrobenthos du bassin de la Dordogne. 6ème note : la rivière Dordogne et quelques affluents, Diptères aquatiques et semi-aquatiques (à l’exclusion des Chironomidae et Ceratopogonidae) [Diptera]. Ephemera 22(2) : 95‑112.

Lambs L., 2004. Interactions between groundwater and surface water at river banks and the confluence of rivers. Journal of Hydrology 288(3‑4) : 312‑326. https://doi.org/10.1016/j.jhydrol.2003.10.013

Laurent C., Couturié J.-P., Morel J.-M. & Vincent P., 2009. Beaumont (Puy-de-Dôme): les mémoires de l’eau : hydrogéologie, hydrologie et hydraulique. Beaumont : Mairie de Beaumont.

Leprêtre A. & Mouillot D., 1999. A comparison of species diversity estimators. Population Ecology 41(2) : 203‑215. https://doi.org/10.1007/s101440050024

Van Looy K., Jochems H., Vanacker S. & Lommelen E., 2007. Hydropeaking impact on a riparian ground beetle community. River Research and Applications 23 : 223‑233. https://doi.org/10.1002/rra.975

Malavoi J. R. & Souchon Y., 2002. Description standardisée des principaux faciès d’écoulement observables en rivière : clé de détermination qualitative et mesures physiques. Bulletin Français de la Pêche et de la Pisciculture 365/366 : 357‑372. https://doi.org/10.1051/kmae:2002040

Marczak L. B. & Richardson J. S., 2007. Spiders and subsidies: results from the riparian zone of a coastal temperate rainforest. Journal of Animal Ecology 76(4) : 687‑694. https://doi.org/10.1111/j.1365-2656.2007.01240.x

Martini S., Larras F., Boyé A., Faure E., Aberle N., Archambault P., Bacouillard L., Beisner B. E., Bittner L., Castella E., Danger M., Gauthier O., Karp‐Boss L., Lombard F., Maps F. et al., 2021. Functional trait‐based approaches as a common framework for aquatic ecologists. Limnology and Oceanography 66(3) : 965‑994. https://doi.org/10.1002/lno.11655

Mathieu-Resuge M., 2022. Fatty acid composition differs between emergent aquatic and terrestrial insects—A detailed single system approach. Frontiers in Ecology and Evolution 10 : 952292. https://doi.org/10.3389/fevo.2022.952292

McCravy K. W., 2018. A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems. Insects 9(4) : 170. https://doi.org/10.3390/insects9040170

Montgomery D. R. & Buffington J. M., 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109(5) : 596‑611. https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2

Naiman R. J., Décamps H. & McClain M. E., 2005. Riparia: ecology, conservation, and management of streamside communities. Amsterdam : Elsevier, Academic Press, 430 p.

Naiman R. J., Decamps H. & Pollock M., 1993. The Role of Riparian Corridors in Maintaining Regional Biodiversity. Ecological Applications 3(2) : 209‑212. https://doi.org/10.2307/1941822

Omelková M., Syrovátka V., Křoupalová V., Rádková V., Bojková J., Horsák M., Zhai M. & Helešic J., 2013. Dipteran assemblages of spring fens closely follow the gradient of groundwater mineral richness. Canadian Journal of Fisheries and Aquatic Sciences 70(5) : 689‑700. https://doi.org/10.1139/cjfas-2013-0026

Perla B. S. & Stevens L. E., 2008. Biodiversity and Productivity at an Undisturbed Spring in Comparison with Adjacent Grazed Riparian and Upland Habitats. Dans : Aridland springs in North America: ecology and conservation. Tucson : University of Arizona Press and The Arizona-Sonora Desert Museum, p. 230‑243.

Piégay H., 1996. Représentation de la biodynamique fluviale : la forêt alluviale de la moyenne Ardèche. Mappemonde 3 : 15‑22.

Plachter H., 1986. Die Fauna der Kies- und Schotterbänke dealpiner Flüsse und Empfehlungen für ihren Schutz. Berichte der Bayerischen Akademie für Naturschutz und Landschaftsplefge 10 : 119‑147.

Plant A., 2004. Hilara Meigen (Diptera: Empididae) in Britain: a provisional synopsis of distribution, habitat preferences and behaviour. Acta Universitatis Carolinae. Biologica 48 : 165‑196.

Popescu C., Oprina-Pavelescu M., Dinu V., Cazacu C., Burdon F., Forio M., Kupilas B., Friberg N., Goethals P., McKie B. & Rîșnoveanu G., 2021. Riparian Vegetation Structure Influences Terrestrial Invertebrate Communities in an Agricultural Landscape. Water 13(2) : 188. https://doi.org/10.3390/w13020188

Reyes-Maldonado R., Sánchez-Ruiz J. A., Universidad de Puerto Rico, Ramírez A., Universidad de Puerto Rico, Kelly S. P. & Universidad de Puerto Rico., 2018. Comunidades de arañas ribereñas como indicadores de la condición de los ecosistemas fluviales en la cuenca del Río Piedras de Puerto Rico. Actualidades Biológicas 39(107) : 1‑23. https://doi.org/10.17533/udea.acbi.v39n107a07

Riis T., Kelly-Quinn M., Aguiar F. C., Manolaki P., Bruno D., Bejarano M. D., Clerici N., Fernandes M. R., Franco J. C., Pettit N., Portela A. P., Tammeorg O., Tammeorg P., Rodríguez-González P. M. & Dufour S., 2020. Global Overview of Ecosystem Services Provided by Riparian Vegetation. BioScience 70(6) : 501‑514. https://doi.org/10.1093/biosci/biaa041

Rotheray G. E. & Robertson D., 1993. Insects from Shingle Banks and Riverside Habitats in Strathspey. Malloch Society, 28 p.

Schatz I., 2006. Importance of riparian rove beetles (Coleoptera: Staphylinidae) as indicators for restoration processes. Natur in Tirol - Naturkundliche Beiträge der Abteilung Ulmweltschutz 13 : 272‑292.

Sienkiewicz P. & Żmihorski M., 2012. The effect of disturbance caused by rivers flooding on ground beetles (Coleoptera: Carabidae). European Journal of Entomology 109(4) : 535‑541. https://doi.org/10.14411/eje.2012.067

Skvarla M., Larson J., Fisher R. & Dowling A., 2020. A Review of Terrestrial and Canopy Malaise Traps. Annals of the Entomological Society of America 114 : 1‑21. https://doi.org/10.1093/aesa/saaa044

Smith J. & Smith P., 2004. Ecological Values, Role and Importance of Riparian Vegetation in the Blue Mountains (report to Residents Against Improper Development). DOI : 10.13140/RG.2.2.14495.71843

Sprössig C., Dziock F. & Buchholz S., 2022. Changes in carabid diversity indicate successful restoration of riparian habitats. International Review of Hydrobiology 107(1) : 18. https://doi.org/10.1002/iroh.202102098

Statzner B., Bady P., Dolédec S. & Schöli F., 2005. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of trait patterns in least impacted river reaches. Freshwater Biology 50(12) : 2136‑2161. https://doi.org/10.1111/j.1365-2427.2005.01447.x

Thomas A., 1969. Sur l’importance des Diptères dans l’environnement de quelques cours d’eau des Pyrénées. Annales de Limnologie 5(1) : 61‑71. https://doi.org/10.1051/limn/1969002

Thorp J. H., Thoms M. C. & Delong M. D., 2008. The riverine ecosystem synthesis: toward conceptual cohesiveness in river science. 1st ed., Amsterdam Boston : Academic Press.

Tillier P., 2021. Deux espèces de tipules nouvelles pour la France : Tipula (Pterelachisus) pseudopruinosa Strobl, 1895 et Tipula (Pterelachisus) luridorostris Schummel, 1833 (Diptera, Tipulidae). L’Entomologiste. 77 : 41‑44.

Tillier P. & Quindroit C., 2022. Découverte en France d’une espèce de Limoniidae supposée endémique de Grande-Bretagne : Paradelphomyia dalei (Edwards, 1939) (Diptera). Bulletin de la Société entomologique de France 127(1) : 61‑64. https://doi.org/10.32475/bsef_2223

Vaughan N., Jones G. & Harris S., 1997. Habitat Use by Bats (Chiroptera) Assessed by Means of a Broad-Band Acoustic Method. The Journal of Applied Ecology 34(3) : 716‑730. https://doi.org/10.2307/2404918

Vebrová L., Van Nieuwenhuijzen A., Kolář V. & Boukal D. S., 2018. Seasonality and weather conditions jointly drive flight activity patterns of aquatic and terrestrial chironomids. BMC Ecology 18(1) : 19. https://doi.org/10.1186/s12898-018-0175-y

Vilks K., 2007. Correspondence Between Larval Development and Adult Residence Habitats of Dolichopodid Flies (Diptera, Empidoidea: Dolichopodidae) in a Heterogeneous Mosaic of Seacoast Grassland Habitats : 10.

Violle C., Reich P. B., Pacala S. W., Enquist B. J. & Kattge J., 2014. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences 111(38) : 13690‑13696. https://doi.org/10.1073/pnas.1415442111

Wagner R., Barták M., Borkent A., Courtney G., Goddeeris B., Haenni J.-P., Knutson L., Pont A., Rotheray G. E., Rozkošný R., Sinclair B., Woodley N., Zatwarnicki T. & Zwick P., 2008. Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae). Dans : Balian EV, Lévêque C, Segers H, Martens K. Freshwater Animal Diversity Assessment. Dordrecht : Springer Netherlands, p. 489‑519. https://doi.org/10.1007/978-1-4020-8259-7_49

Ward J. H., 1963. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58(301) : 236‑244.

Ward J. V., Tockner K. & Schiemer F., 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity1. Regulated Rivers: Research & Management 15(1‑3) : 125‑139. https://doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E

White P. S., Harrod J., Walker J. L. & Jentsch A., 2000. Disturbance, Scale, and Boundary in Wilderness Management. USDA Forest Service Proceedings RMRS-P-15 2 : 27‑42.

Zina V., Ordeix M., Franco J. C., Ferreira M. T. & Fernandes M. R., 2021. Ants as Bioindicators of Riparian Ecological Health in Catalonian Rivers. Forests 12(5) : 625. https://doi.org/10.3390/f12050625

Arrêté du 25 janvier 2010 relatif aux méthodes et critères d’évaluation de l’état écologique, de l’état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l’environnement : 55.

Arrêté du 17 octobre 2018 modifiant l’arrêté du 25 janvier 2010 établissant le programme de surveillance de l’état des eaux en application de l’article R. 212-22 du code de l’environnement : 98.

Téléchargements

Publié-e

10/12/2022

Comment citer

LABAT, F. (2022). Les Diptères comme outil d’évaluation de l’état du corridor rivulaire – premières expérimentations sur des cours d’eau du Massif central, et comparaison avec des cours d’eau de Bretagne et des Pyrénées. BIOM - Revue Scientifique Pour La Biodiversité Du Massif Central, 3(1), 52–67. https://doi.org/10.52497/biom.v3i1.303

Numéro

Rubrique

Articles